
UNIVERSIDADE FEDERAL DO PARANÁ

BRUNO FREITAS SERBENA

DEEP LEARNING IN FINGERPRINT MINUTIAE EXTRACTION

CURITIBA PR

2019

BRUNO FREITAS SERBENA

DEEP LEARNING IN FINGERPRINT MINUTIAE EXTRACTION

Trabalho apresentado como requisito parcial à con-
clusão do Curso de Bacharelado em Ciência da Com-
putação, Setor de Ciências Exatas, da Universidade
Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: David Menotti Gomes.

CURITIBA PR

2019

Ficha catalográfica
Substituir o arquivo 0-iniciais/catalografica.pdf pela ficha catalográfica fornecida
pela Biblioteca da UFPR (PDF em formato A4).

Instruções para obter a ficha catalográfica e fazer o depósito legal da tese/dissertação
(contribuição de André Hochuli, abril 2019):

1. Verificar se está usando a versão mais recente do modelo do PPGInf e atualizar, se for
necessário (https://gitlab.c3sl.ufpr.br/maziero/tese).

2. conferir o Checklist de formato do Sistema de Bibliotecas da UFPR, em
https://portal.ufpr.br/teses_servicos.html.

3. Enviar email para "referencia.bct@gmail.com" com o arquivo PDF da
dissertação/tese, solicitando a respectiva ficha catalográfica.

4. Ao receber a ficha, inseri-la em seu documento (substituir o arquivo
0-iniciais/catalografica.pdf do diretório do modelo).

5. Emitir a Certidão Negativa (CND) de débito junto a biblioteca
(https://www.portal.ufpr.br/cnd.html).

6. Avisar a secretaria do PPGInf que você está pronto para o depósito. Eles irão mudar sua
titulação no SIGA, o que irá liberar uma opção no SIGA pra você fazer o depósito legal.

7. Acesse o SIGA (http://www.prppg.ufpr.br/siga) e preencha com cuidado os
dados solicitados para o depósito da tese.

8. Aguarde a confirmação da Biblioteca.

9. Após a aprovação do pedido, informe a secretaria do PPGInf que a dissertação/tese foi
depositada pela biblioteca. Será então liberado no SIGA um link para a confirmação dos
dados para a emissão do diploma.

Ficha de aprovação

Substituir o arquivo 0-iniciais/aprovacao.pdf pela ficha
de aprovação fornecida pela secretaria do programa,
em formato PDF A4.

To Mary, for being the smartest
person in this chaotic world.

AGRADECIMENTOS

Thank you Menotti for being the best teacher.
Thank you my friends for being weird.
Thank you Emilia for being there to support me and keep me going.

RESUMO

Detecção de minúcias é crucial para sistemas de reconhecimento automático de
digitais. Minúcias são pequenas características formadas pelos cumes da impressão digital,
como o fim de um cume ou uma bifurcação. O estado da arte de detecção de objetos
em computação é todo realizado por redes neurais convolucionais (CNNs). Além disso, a
pesquisa em Deep Learning melhorou o desempenho desses detectores por uma grande
margem nos últimos anos; com técnicas de design novas, e mais rápidas, como os regressores
de caixa delimitadora nas redes YOLO e SSD. Levando isso em conta, este documento
propõe uma adaptação da rede YOLO para realizar detecção de minúcias com classificação
de tipo. Alguns trabalhos existentes, MENet, FingerNet e MinutiaeNet, são bem precisos,
mas nenhum classifica os tipos de minúcias e são mais lentos no tempo de processamento
quando comparados a YOLO. Com as minucias detectadas, o desempenho conseguido em
matching de impressões digitais usando o algoritmo do SourceAFIS é competitivo com a
detecção interna do SourceAFIS; são iguais no ponto de Taxa Positiva Verdadeira (TPR)
84,5% e Taxa Falsa Positiva (FPR) 15%. Mas o SourceAFIS domina com maior TPR
em valores de menor FPR na curva ROC. Mesmo assim, a abordagem proposta possui
uma área maior que o SourceAFIS na curva. Com uma técnica de extração de ângulo
aprimorada, o desempenho parece promissor, já que este resultado não utilizou nenhuma
informação de ângulo. Como indicação, a detecção em si teve precisão alcançada 86,67% e
recall de 86,09% utilizando um limiar de 0,2 no conjunto de dados FVC2004 é comparável
aos resultados do estado da arte; Dado que o MinutiaeNet (Nguyen et al., 2018) atingiu
85,9 % de precisão e 84,8 % de recall. Apesar de a rede não extrair informação de angulos,
ela extrai informações de tipo, que nenhum dos outros sistemas referenciados aqui tentam
fazer.

Palavras-chave: Redes Neurais Convolucionais. Deep Learning. Extração de minúcias.
Reconhecimento de impressões digitais.

ABSTRACT

Minutiae detection is crucial to automatic fingerprint recognition systems. These
are small features formed by the ridges of the fingerprint, such as the end of a ridge
or bifurcation. The state of the art of automatic object detection in computing are all
performed by Convolutional Neural Networks. Additionally, research in Deep Learning
improved the performance of these detectors by a large margin in the last few years;
with new and faster, design patterns such as bounding-box regressors in YOLO and
SSD. As such, this document proposes a YOLO adaptation to minutiae detection with
type classification. Some existing work MENet, FingerNet and MinutiaeNet are very
accurate, but none classifies minutiae types and are slower in processing time compared
to YOLO. With the detected minutiae, the final fingerprint matching performance using
SourceAFIS’ algorithm competes with SourceAFIS’ own internal detection performance;
they are equal in the point True Positive Rate (TPR) 84.5% and False Positive Rate (FPR)
15%. But SourceAFIS’ detection dominates with higher TPR in values of lower FPR in
the ROC curve. Even so, the proposed approach has a higher area than SourceAFIS in
the curve. With an angle extraction technique the performance looks promising, since
this result did not use any angle information in the templates given to SourceAFIS. As
indication, the detection itself achieved a precision of 86.67% and recall of 86.09% using a
0.2 threshold in the FVC2004 dataset is comparable to state of the art results; Given that
MinutiaeNet (Nguyen et al., 2018) achieved 85.9% precision and 84.8% recall. Even if our
precision doesn’t take angle correctness into account (MinutiaeNet does), it extracts type
information, which none of the other systems referenced here do.

Keywords: Convolutional Neural Networks. Deep learning. Minutiae extraction. Finger-
print recognition.

LISTA DE FIGURAS

1.1 Minutiae examples from FVC2004DB1A image 1_1 12

2.1 Minutiae examples . 22

3.1 Different labels of FM3 (Kayaoglu et al., 2013) X and FingerNet (Tang
et al., 2017a) + in the image 1_1 of FVC 2004 DB1A 26

4.1 Orientation blocks for image 10_1.png in FVC2004DB1A 34
4.2 Orientation blocks for image 10_2.png in FVC2004DB1A 35

5.1 Precision-recall curves, using FingerNet labels, of different network configu-
rations in a open world scenario . 37

5.2 Precision-recall curves, using FingerNet labels, of different network configu-
rations in a closed world scenario . 38

5.3 ROC curves, using FingerNet labels, of the v3-spp network using different
YOLO detection thresholds, 100 means it’s a threshold of 0.100 40

5.4 ROC curves, using FingerNet labels, of the v3-spp network using different
small detection thresholds, 100 means it’s a threshold of 0.100 40

5.5 ROC curves, using FM3 labels, of the v3-spp network using different YOLO
detection thresholds . 41

5.6 ROC curves, using FingerNet labels, of different network configurations in a
open world scenario . 41

5.7 ROC curves, using FM3 labels, of different network configurations in a open
world scenario . 42

5.8 ROC curves of different network configurations in a open world scenario,
configurations suffixed with FM3 were trained with those labels 43

LISTA DE TABELAS

5.1 Open set Area Under Curve (precision-recall) 38
5.2 Closed set Area Under Curve (precision-recall) 39

LISTA DE ACRÔNIMOS

DINF Departamento de Informática
PPGINF Programa de Pós-Graduação em Informática
UFPR Universidade Federal do Paraná
mAP mean Average Precision
APs Average Precision on small scale objects (COCO)
CNN Convolutional Neural Network
ReLU Rectified Linear Unit (an activation function)
SPP Spatial Pyramid Pooling
FPN Feature Pyramid Network (Lin et al., 2017a)
AUC Area Under Curve
FAR False Acceptance Rate
FPR False Positive Rate
FRR False Rejection Rate
GAR Genuine Acceptance Rate
TPR True Positive Rate
EER Equal Error Rate
FM3 Fingerprint Manual Minutia Marker (Kayaoglu et al., 2013)
FPS Frames Per Second

LISTA DE SÍMBOLOS

µ mean
σ2 variance

SUMÁRIO

1 INTRODUCTION . 12
1.1 CHALLENGE . 12
1.2 MOTIVATION. 13
1.3 PROPOSAL . 13
1.4 CONTRIBUTION . 13
1.5 DOCUMENT LAYOUT . 14
2 BACKGROUND . 15
2.1 DEEP LEARNING . 15
2.1.1 Improvements . 16
2.1.2 Convolutional Neural Networks for Object Detection 18
2.1.3 CNN regressors. 20
2.2 MINUTIAE . 22
2.3 CONCLUSION. 23
3 BIBLIOGRAPHY REVIEW . 24
3.1 DATABASE AVAILABILITY . 24
3.2 EXISTING WORK . 26
3.2.1 MENet . 27
3.2.2 FingerNet . 27
3.2.3 MinutiaeNet . 28
3.3 PERFORMANCE ASSESSMENT. 28
3.3.1 Matching Performance . 29
3.4 CONCLUSION. 29
4 METHODOLOGY . 31
4.1 YOLO CONFIGURATION. 31
4.2 DATABASE . 32
4.3 SOURCEAFIS . 32
4.4 ANGLE EXTRACTION . 33
4.5 CONCLUSION. 35
5 EXPERIMENTS . 36
5.1 SCENARIO . 36
5.2 CONCLUSION. 42
6 CONCLUSION . 44

REFERÊNCIAS . 45

12

1 INTRODUCTION

Fingerprint recognition is usually executed in two steps, minutiae extraction to
create templates and template matching. This document will focus on the extraction of
fingerprint minutiae using YOLO (Redmon e Farhadi, 2018), a state of the art object
detection Neural Network. Additionally, the background of the most influential Neural
Networks detectors will be studied to contextualize recent improvements in the field and
the existing work in minutiae detection.

1.1 CHALLENGE

Automatic fingerprint recognition is one of the most studied fields in biometrics
(Jain et al., 2016). The main methods of fingerprint recognition utilize minutiae, which
are major features of a fingerprint formed by its ridges.

(a) Type: ending (b) Type: bifurcation

Figura 1.1: Minutiae examples from FVC2004DB1A image 1_1

Figures 1.1(a) and 1.1(b) are examples of minutiae of type: ending, and bifurcation
respectively. The extraction of minutiae consists of given an input image of a fingerprint,
outputting relevant information about each minutiae, for example: coordinates, type, and
orientation. Some automatic extraction systems don’t output type or orientation. This
is because after the extraction, a matcher is employed (some matchers don’t use some
information). The matcher uses this extracted data to score a set of minutiae against
each other. Which information that the matcher uses is implementation dependent. There
is a lack of robust minutiae type classifiers (Prabhakar et al., 2003) so some fingerprint
recognition algorithms found in the literature ignore the type of minutiae. A matcher like
Minutiae Cylinder Code (Cappelli et al., 2010) uses coordinates, and orientation, but not
the type. While SourceAFIS (Vazan, 2009) uses all three.

Fingerprint minutiae, because of imperfections originating from and lack of contact
or pressure, lack of ink, and rolled impressions, are hard to detect with classical skeleton-
based methods (Zhao e Tang, 2007) (Khan, 2011) with good precision and recall. These
approaches utilize, for example, multiple minutiae detected in proximity to each other to
detect and exclude spurious minutiae.

A bottleneck in automatic fingerprint recognition systems is the extraction of
the minutiae. Particularly in latent fingerprints, for example in the context of criminal
forensics, in which imperfections are accentuated.

This document studies the use of techniques of machine learning for automatic
fingerprint minutiae extraction. Specifically the use of convolutional neural networks which
recently obtained impressive results in image recognition, e.g. achieving superhuman
performance in Microsoft’s convolutional neural networks (He et al., 2015).

13

1.2 MOTIVATION

Recently a lot of progress has been made in object detection tasks utilizing deep
learning. YOLOv3-608 (Redmon e Farhadi, 2018) achieved 33.0 mAP (mean Average
Precision) on COCO (Lin et al., 2014). The COCO dataset has 1.5 million object instances
within 330 thousand images, having 80 object categories. While RetinaNet-101-800 (Lin
et al., 2017b) achieves 37.8 mAP with a tradeoff in speed, taking 3.8 times longer than
YOLOv3-608. Additionally, on a easier dataset, PASCAL VOC2007 (Everingham et al.,
2007) with 24.64 thousand object instances within 9,963 images, having 20 object categories.
The network SSD (Liu et al., 2016) achieved 74.3 mAP and Faster R-CNN (Ren et al.,
2015) 73.2 mAP.

The motivation is to utilize this recently developed advances in deep learning in
other detection tasks. Rather than people and objects in videos and images in for example
the COCO dataset (Lin et al., 2014), try to adapt them to see how well they perform in
the detection of details and minutiae, such as fingerprint minutiae.

1.3 PROPOSAL

The idea is to analyze recent deep learning networks explored for object detection
that have had successful evaluations on databases such as COCO (Lin et al., 2014) and
PASCAL VOC (Everingham et al., 2012) and adapt one of them to test how well they
perform in this specific task. Also to analyze how they compare with the classical approach
of SourceAFIS, an open source project.

This analysis will consider two factors. precision and recall of extracted minutiae
when comparing to a annotated test dataset, using a distance tolerance for true positives
(so it’s not only pixel perfect matches). And matching performance, using the matcher from
SourceAFIS (SourceAFIS can extract minutiae and match separately). We convert our
extraction results to the template of the matcher and test it against the match performance
of the internal extraction implementation.

1.4 CONTRIBUTION

In this document we present the configuration and steps to successfully adapt
YOLOv3 to extract fingerprint minutiae for automatic fingerprint recognition, the extractor
configuration, trained weights and scripts to analyze the performance can be found here
https://github.com/bfs15/fingerYolo. It is also shown performance tests in
the form of precision-recall curves of the trained networks, together with speculations into
the possible causes of lack or gains in performance of different configurations.

Although the adapted network did not achieve the high performances of specialized
networks, such as MinutiaeNet (Nguyen et al., 2018) that achieved 85.9% precision and
84.8% recall in FVC2004, the adapted YOLOv3 approach here described achieved 86.67%
precision and 86.09% recall using a 0.2 threshold. Which is a very good outcome given
that YOLO is the fastest available detection convolutional neural network1.

1Our precision does not take angle correctness into account, while MinutiaeNet does, which is why we
don’t claim to have achieved better performance.

https://github.com/bfs15/fingerYolo

14

1.5 DOCUMENT LAYOUT

Next chapter, Background, basic information about convolutional neural networks
will be explained together with some specific improvements in network design. Following
that, on the same chapter, there is a recapitulation of Deep Learning designs for object
detection in recent years, in which successful systems will be described.

In Chapter 3, Bibliography Review, existing work on minutiae detection will be
discussed, with a focus on Deep Learning approaches. Firstly the availability of databases
seen in the existing work will be listed, and their properties described. On the Existing
Work section, three recently researched systems for minutiae extraction will have their
networks and techniques reviewed together with the performance assessment each research
made available.

In Methodology the process of adapting the network and building the extraction
system will be described in detail. This includes the network configuration, database
information, the background needed to use and evaluate SourceAFIS, and the method for
angle extraction.

In Experiments the scenarios for each test will be described. The resulting
precision-recall curves, identification accuracies, and FAR FRR curves are displayed there,
together with speculations about these results.

15

2 BACKGROUND

2.1 DEEP LEARNING

Deep learning is a class of machine learning methods that learn data representations
and can have either supervised, semi-supervised or unsupervised training. In this study we
analyze the use of convolutional neural networks (CNNs) for the purposes of classification,
and localization (together called detection).

Supervised training utilizes a database of examples, previously labeled (manually
or by a curated automatic approach), each example being defined by the network input
and its desired output. For example an image and its object’s bounding boxes with the
name of the class of the object (the label). A network is trained with such dataset to adjust
its parameters guided by an optimization algorithm with the objective of minimizing a
defined loss function, for example classification error in a classification network. And for
the calculation of the loss function the labels, in other words, the desired output, is used.

While the training stage minimizes the loss function in the dataset, the objective
of a classifier is achieving great performance in examples which are not in the training
dataset. What is desired is that the network generalizes from the training dataset to
classify real world examples well.

Evaluating the error rate of the final model based on the training dataset is unfair
due to the fact it does not properly demonstrate the generalization power of the network
and its performance on real world examples. With that in mind, the efficacy of CNNs are
measured with a test database, a database which was never seen during training, using
statistical analysis. The test database can’t be used for purposes of hyper-parameter tuning
and final model choice, to avoid overfitting the hyper-parameters to the test database and
making an unfair performance assessment. For those purposes a set disjoint from the test
set, the validation set is used. To make such performance assessments, the validation and
test sets need to be labeled as well, vast quantities of labeled data are required for the
development of convolutional neural networks.

There are other types of training such as semi-supervised or unsupervised but this
study focuses on supervised which is widely used in classification and detection tasks.

Convolutional Neural Networks are multilayered structures, each layer transfor-
ming its input and outputting the values to the next layer(s) (which will in turn be their
input). Though each layer can have multiple layers as inputs and outputs (Szegedy et al.,
2016), there are very successful CNNs in image recognition that are sequential (Simonyan
e Zisserman, 2014) (each layer having only one previous and one next layer, pipeline-like).

Many successful image classification networks are assembled as multiple convolu-
tional and max pooling layers that are eventually flattened and input into dense (fully
connected) layers (in dense layers each unit/neuron is connected to each neuron in the
previous layer) ending in a softmax output (Dense) layer the size of the number of classes
in the classification task.

A convolutional layer, basis for image classification networks, applies multiple
kernels (filters) to the input tensor (analogous to image processing kernels/masks). A
tensor being for example could be an image with shape (lines, columns, channels) or an
output from a convolutional layer, called a feature map, which instead of channels is as
deep as the number of filters in the layer.

16

These layers together with max pooling are responsible for learning the represen-
tation (Garcia-Gasulla et al., 2017) of the data. After flattening1, the dense layers then
uses the extracted feature maps to classify the data.

This information can be used in transfer learning, in which a already trained
network is repurposed for other tasks/classes (Donahue et al., 2014), with this the powerful
feature extraction capabilities of big (and expensive to train) networks such as Inception
can be reutilized.

Deep learning recently has been consistently given good results thanks to some
factors:

• The development of new models and algorithms to train deep neural networks.
Activation functions such as ReLU that diminish the problem of the vanishing
gradient that was pronounced in deep neural networks (Glorot et al., 2011). Batch
Normalization. Residual learning. Wider sparsely connected architectures popula-
rized by Inception (Szegedy et al., 2015) and VGGNet (Simonyan e Zisserman,
2014). Optimizers such as Adadelta (Duchi et al., 2011) and later Adam (Kingma
e Ba, 2014).

• Vast quantities of labeled data, necessary to train robust DNNs.
Though a lot of unlabeled data is available on the web, the labeling costs sometimes
are an issue in building a sufficiently big database. The biggest contributors are
publicly available databases such as ImageNet (Deng et al., 2009).

• Faster and cheaper processing power fit for the purposes of running CNNs have
become available through GPUs (Graphics Processing Unit).

• Availability of open source high-level neural networks frameworks that have efficient
C++/CUDA backend implementations.
Tensorflow (Abadi et al., 2016) + Keras (Chollet, 2015); Torch7(Collobert et al.,
2016)

2.1.1 Improvements

As mentioned in the previous section, new architectures and and algorithms helped
to make training deeper networks more feasible.

2.1.1.1 Batch Normalization

Batch Normalization, was tested in Inception in a study by Sergey Ioffe and
Christian Szegedy (Ioffe e Szegedy, 2015). By introducing Batch Normalization in the
Inception network they were able to match the accuracy of Inception in less than half the
number of training steps, but by taking advantage of the technique and increasing the
learning rate by 5 times they were able to achieve the same 14 times fewer steps than
Inception.

Batch Normalization is simply a standardization of the batch; to do it the mean
(µ) and variance (σ2) of the batch are calculated, with xi being all the N input features of
the batch i=0..N-1:

1converting the feature map into a single column (a 1D vector).

https://www.tensorflow.org/
https://keras.io/
http://torch.ch/

17

µ = 1
N

N−1∑
i=0

xi

σ2 = 1
N

N−1∑
i=0

(xi − µ)2

With these variables you can now calculate the normalized features xi:

x̂i = xi − µ√
σ2 + ε

The new normalized features have zero mean and unit variance. And the result
is that Batch Normalization reduces the covariate shift introduced along the network by
the transformations performed in the layers, by normalizing the output of a layer before
the activation. Covariate shift meaning when the input distribution to a learning system
changes (specifically the mean and variance), and this can happen by the virtue of the
network kernel and activation function configurations.

After the normalization a linear transformation is applied in each feature:

li = Wx̂i + b

Where W and b are learnable parameters, possible since batch normalization is
differentiable (the basis of backpropagation). li is then input into the activation function
and that is the layer’s output. Batch Normalization yields a lot of improvement in the
network’s training speed and some in the accuracy, especially when paired with ReLU
activation functions (Ioffe e Szegedy, 2015).

2.1.1.2 ReLU

Comparing ReLUmax(0,Wx+b) with the formerly widely used Sigmoid activation
function 1/(1+e−x), it brings some solutions to the problems that Deep Learning introduces
when stacking a bigger quantity of layers (Krizhevsky et al., 2012). First, the function is
computationally inexpensive, a single fused multiply add and max function as opposed to
a division and exp function.

Secondly it handles the vanishing gradient problem that is emphasized in Deep
Learning as the gradient from, for example, a Sigmoid is reduced each layer. Since the
derivative of a Sigmoid is at most 0.25 after multiplying it for the however many layers it
quickly converges to zero (vanishes). This in contrast to ReLU which solves this because
it has a constant gradient when x > 0.

Additionally ReLU enforces sparse representations, since the function returns real
zeroes when x < 0. Sparse representations are more likely to be linearly separable, which
is desirable of feature extraction. In practice ReLU shows a faster convergence of deep
models, in particular, ImageNet achieved six times faster training time than the equivalent
network with tanh neurons (Krizhevsky et al., 2012).

2.1.1.3 Data augmentation

Vasts amounts of data are required for training a deep network, but there’s not
always much available and it may be costly to gather and label more. Data augmentation
is a technique to artificially increase the quantity of data the network receives as input

18

during training. Simple ways of achieving this are to crop, rotate, saturate, flip, color
jitter, the input training images randomly, thereby diversifying the input.

This technique reduces the chances of the network overfitting, by it’s random
nature and artificial increase in size making it harder for the network to perform well
on the training data without more generalization than the non-augmented counterpart.
Data augmentation also improves the performance of networks as reported in (Taylor e
Nitschke, 2017), as increases in the training set generally expand the networks potential.
Some other more advanced techniques such as using other Neural Networks (e.g. GANs)
to alter the input data have gathered some good results (Perez e Wang, 2017).

As for object detection tasks, the network designs and their improvement, adapta-
tions, and shortcomings are described in the following section.

2.1.2 Convolutional Neural Networks for Object Detection

A CNN classifiers, such as Inception, output categorical data in a one-hot encoded
vector. You can interpret the output vector as the probability of the input being in each
class represented in the vector. This is possible due to having a softmax layer as the
output and using cross-entropy as the loss function.

But for purposes of location that is not enough, what we need is either a single
point coordinate or a bounding box (which can be described with 2 coordinates).

2.1.2.1 Sliding Window

An expensive way of adapting a CNN classifier into a location network is using
a sliding window over the desired image. Taking windows of fixed size and stride from
image and using them as input to the network we can then use the output probabilities to
discern in which area the object is.

Aside from having a large amount of windows for the network to process, turning
the computation expensive, there is also a problem of the scale of the object in the image.
Depending on the kind of images being analyzed an object could occupy a wide range of
the image’s area, e.g. from 20% of the image to 75%.

A solution would be to resize the input image to multiple scales and choose a
window size such that it will completely contain the object in one of the resized images,
independent from the original image’s scale.

2.1.2.2 Region-based Convolutional Neural Networks (R-CNN)

The sliding window approach being computationally very expensive, R-CNNs
(Girshick et al., 2014) try to lessen the cost of using a CNN for object detection by using
a region proposal algorithm. The one used in the original paper by Ross Girshick, et
al. (Girshick et al., 2014) uses Selective Search (Uijlings et al., 2013) but is agnostic to
the method used. The idea is that the region proposal algorithm reduces the amount of
windows that will be processed by the CNN by finding Regions of Interest (ROI).

In the original paper the proposed regions are fed into a CNN and a feature vector
is extracted, which is then classified with linear SVMs (Girshick et al., 2014).

19

2.1.2.3 Spatial Pyramid Pooling (SPP-net)

While R-CNNs reduced the amount of windows evaluated by the CNN, its was
still way more computationally expensive than HOG based classifiers, which spurred the
creation of SPP-net (He et al., 2014).

SPP-net calculates the feature maps from the for whole image only once and use
that to calculate window-wise features for each patch generated by Selective Search. In
other words SPP-net extracts window-wise features from regions of the feature maps, while
R-CNN extracts from image regions.

To achieve that Spatial pyramid pooling (SPP) is used, which generates fixed-
length representations from pooling features in arbitrary regions (sub-images). SPP layer
divides a region of any arbitrary size into a fixed number of bins that are then max pooled
on each of the bins. By consequence SPP-net allows for a variable input image size, since
fixed-length representation are generated regardless of image size. The SPP layer was
inspired from spatial pyramid matching (SPM) (Lazebnik et al., 2006).

One disadvantage SPP-net has is that due to the SPP layer it cannot update the
convolutional layers that precede it, which limits the accuracy.

With SPP-net, Kaiming He et al. achieved rank 2 in ILSVRC 2014 object detection
and a speedup of more than one hundred times over R-CNN.

2.1.2.4 Fast R-CNN

Fast R-CNN (Girshick, 2015) uses ideas from both R-CNN and SPP-net while
rectifying their drawbacks. As opposed to SPP-net, Fast R-CNN’s training can update all
network layers (end-to-end learning).

Fast R-CNN takes as input an entire image and a set of object proposals; the
network generates a feature map from the entire image and then each object proposal goes
through a region of interest (RoI) pooling layer.

RoI pooling layer converts the features inside valid regions of interest into a small
fixed spatial extent (H x W) feature map. The RoI layer is a simple spatial pyramid
pooling layer used in SPPnets (He et al., 2014), with only one level.

The feature vectors from the RoI pooling layer are then fed into dense layers that
branch into two output layers. One layer classifies and the other outputs four real numbers
for each of the classes, which encode bounding boxes. Having 2 output layers, Fast R-CNN
no longer needs training independently for classification and localization.

The part that generates a single feature map from the entire image before the RoI
pooling layer is called the shared convolutional subnetwork, while the part that receives
separate object proposals and get computed individually from the shared output is called
the RoI-wise subnetwork.

To find object proposals it still uses Selective Search.

2.1.2.5 Faster R-CNN

In the interest of getting even faster results, Faster R-CNN (Ren et al., 2015) intro-
duces Region Proposal Networks (RPN). Since Selective Search was the speed bottleneck
of Fast R-CNN, RPNs were designed to substitute it as region proposal method.

The input of RPN is an image of variable size (like previous methods) and outputs
rectangular object proposals, each with a measure of membership to classes vs. background.

20

This is done by using a small fully-convolutional network over the feature map
output by the last shared convolutional layer. Then the output from RPN goes into two
sibling fully-connected layers: a box-regression layer, and a classification layer.

2.1.2.6 Region-based Fully Convolutional Networks (R-FCN)

R-FCN (Dai et al., 2016) takes inspiration from Residual Nets (ResNets) (He
et al., 2016) and GoogLeNet (Szegedy et al., 2015) of being designed as fully convolutional,
RPNs from Faster R-CNN (Ren et al., 2015), and capitalizes on the idea of shared feature
maps from SPP-net (He et al., 2014) by getting rid of RoI-wise subnetworks.

Jifeng Dai et al. (Dai et al., 2016) brings up the issue that while image-level
classification perform better with translation invariance, object detection actually needs
representations that are translation-variant so that it has information on how well the
bounding-box overlaps with the object. Their proposed theory is that deeper networks
provide this invariance, and that using RoI pooling layer in the middle of the network
breaks this, but as a consequence part of the network becomes independent (the RoI-wise
subnetwork) and this compromised speed.

So they propose a network such that there are no RoI-wise subnetwork. To
accomplish that they generate a set of position-sensitive score maps by using specialized
convolutional layers in the FCN. The score maps are position-sensitive because each has
position information as a relative spatial position (e.g., “to the left of an object”) encoded
within.

The score maps from the FCN are then used in a RPN to extract region proposals
(RoIs). Then the same score maps, filtered by the RPN, go through a position-sensitive
RoI pooling layer, with no RoI-wise subnetwork afterwards.

With these changes they achieved speeds 2.5x to 20x faster than Faster R-CNN.

2.1.3 CNN regressors

The methods above tackle the detection problem as a classification problem with
a pipeline: Object proposals are generated and then these proposals are used in the input
to the CNN which will classify (or in Fast/er R-CNN it will also perform bounding-box
regression but individually so).

The following methods tackle detection as a regression problem, they discard the
idea of region proposals and through a unified network simultaneously predict multiple
bounding boxes and class probabilities for each.

RetinaNet-101 (Lin et al., 2017b) won’t be detailed here, but deserves mentioning.
It has the best performance on the COCO dataset, a bit above YOLOv3, while taking 3.8
times longer than YOLOv3-608. Note worthy is the use of the same technique used in
YOLOv3, multi-scale predictions, explained in the following section.

2.1.3.1 YOLO (You only Look Once)

YOLO’s (Redmon et al., 2016) output is divided in a grid that represent regions of
the input image. Each cell of the output grid is responsible for predicting B bounding-boxes
and their confidence as well as the C class probabilities (a single set of probabilities for
all bounding-boxes). YOLO’s architecture is inspired by the GoogLeNet model, it uses
smaller modules in total having 24 convolutional layers followed by 2 dense layers the last
of which generates the output from the convolutional layer’s feature maps.

21

In contrast to region proposal-based methods that use a subset of the whole
image’s feature maps to classify, each cell from YOLO’s output has information from the
entire image, as such they also encode contextual information about classes. As evidence
of this, compared to Fast R-CNN YOLO makes less than half the number of background
errors.

One shortcoming YOLO has is that the size if the output grid heavily limits the
network’s ability to detect small objects cluttered together, such as birds in a flock.

While the original YOLO’s (Redmon et al., 2016) architecture failed to achieve
state-of-the-art detection accuracy a subsequent improved version, YOLO9000, was able
to perform state-of-the-art, real-time object detection (Redmon e Farhadi, 2017), and has
since improved the design further with YOLOv3 .

A change introduced in YOLOv3 (Redmon e Farhadi, 2018) improves detection for
small objects, called multi-scale predictions. This design change was inspired by Feature
Pyramid Network (FPN) (Lin et al., 2017a). It is a method of feature extraction in multiple
levels of the network. Similar to Scale-space Image Pyramids in image processing (Adelson
et al., 1984). Except it doesn’t scale the image in multiple pyramid levels, and processes
each of them on a network. Instead this design pattern uses the inherent architecture of
CNNs, which are arranged in multiple layers themselves. The convolutional layers get
smaller in spatial size (resolution) as they go deeper in the network. Therefore, it uses
features of multiple levels, instead of just the last one, to do multiple predictions. However,
an important modification to that idea is the reuse of higher-resolution maps of the feature
hierarchy, especially for smaller objects.

The way YOLO implements this idea is to upsample the current layer feature maps
and concatenates them with previous higher-resolution feature maps. Afterwards more
convolutional layers are added to refine this merged output. This makes both semantic
information from the current (upsampled) features and finer-grained information available
to prediction layer. As a result, this improves small object detection by a large margin.
Tests in COCO resulted in going from a APs of 5.0 in YOLOv2 to 18.3 in YOLOv3
(Average Precision on small scale objects).

In addition to that there is YOLOv3 SPP which adds a set of layers just before
the three prediction layers of YOLO v3 to perform Spatial Pyramid Pooling. In the
implementation there are three different maxpooling layers with different sized filters
parallel to each other. The output of these layers are then concatenated and continue
down to the prediction layers. These changes are discussed in a 2019 paper (Huang e
Wang, 2019).

2.1.3.2 Single Shot Detector (SSD)

Developed in the same year as YOLO (Redmon et al., 2016), SSD (Liu et al.,
2016) surpassing the accuracy from Faster R-CNN while also performing in real-time (59
FPS).

To allow detection at multiple scales, progressively smaller convolutional feature
layers are added following the base convolutional network. From each of these feature
maps 3×3 kernels produce bounding-boxes (encoded as 4 offsets) and C class probabilities.
Therefore, to predict B bounding boxes a total of (C + 4)B kernels are needed. Applying
such filters in a m× n feature map yields (C + 4)Bmn values, Bmn bounding boxes.

Since there are multiple feature maps at different scales and each pixel of them
gets B bounding-boxes predicted, the size of the output is quite larger than YOLO’s. In
the example of the original SSD paper (Liu et al., 2016) the feature maps used to extract

22

detection boxes are of size 38, 19, 10, 5, 3, 1 and with 4, 6, 6, 6, 4, 4 bounding boxes for each
feature map respectively, this yields 382×4+192×6+102×6+52×6+32×4+12×4 = 8732
detection boxes per class (in contrast to YOLO’s 98). This higher granularity results in
a greater ability to detect smaller objects closer together when compared to YOLOv2.
However, they don’t implement the modification FPN endorses, the reuse of higher-
resolution maps of the feature hierarchy. Consequently, it underperforms on small objects
when compared to YOLOv3; On the COCO dataset it has a APs of 10.2, compared to
YOLOv2 APs of 5.0, and YOLOv3 APs of 18.3.

As a consequence of these adaptations they achieve high-accuracy using relatively
low resolution inputs.

2.2 MINUTIAE

Biometric authentication has an advantage over traditional authentication in that
the characteristics are not usually easily stolen or reproduced. Additionally, fingerprint
recognition has been extensively used by forensic experts in criminal investigations (FBI,
1984). Minutiae are believed to be the most discriminating and reliable features (FBI,
1984), and a good accuracy in minutiae extraction of latent fingerprints is desirable in
scenarios such as criminal investigations.

Minutiae are major features of a fingerprint, also called level 2 features, they are
formed by the ridges of the print and are classified as shown in Fig. 2.1.

Figura 2.1: Minutiae examples

In the literature the most used ones are ridge ending and ridge bifurcation, which
are the most common minutiae (Maltoni et al., 2009). Other minutiae types are rare
enough that most minutiae matchers (such as the one in SourceAFIS) only support two
distinct types, endings and bifurcations. Often none of the other types appear in any given
fingerprint.

The extraction of minutiae, for use in set pairing algorithms (for fingerprint
recognition), means finding the following attributes of each minutia: position, orientation
angle, minutiae type. Some fingerprint recognition algorithms found in the literature ignore
the type of minutiae because of the lack of robust minutiae type classifiers (Prabhakar
et al., 2003). As an example, Minutiae Cylinder Code (Cappelli et al., 2010) does not use
type information.

Having the location of each minutiae, the orientation angles can be estimated
through the orientation field obtained by a dictionary based method (Yang et al., 2014).
Therefore the focus will be on the detection (position extraction) of the minutiae in a
given fingerprint.

23

2.3 CONCLUSION

There were quite a lot of techniques in Deep Learning researched over the years.
Some like data augmentation, batch normalization and ReLU are extensively used in recent
publications. These consistently increase performance and are quite easily integrated
into initial network designs, as seen in the evolution of YOLO and Inception versions.
Especially ReLU-like activation functions, since sigmoid activations make deep models
restrictive because of vanishing gradients. Specifically for detection, a lot of research
effort has gone into making faster networks, since the naive approaches are very costly
(e.g. sliding windows). While other design patterns like region proposals, be it by using
Selective Search or a Region Proposal Network, aren’t used in some detection networks
state of the art designs like YOLO and RetinaNet. A new promising design pattern is
Feature Pyramid Network-like extraction of features, adopted by YOLO and RetinaNet,
while being used in a primitive form in SSD. It improves small object detection greatly,
as evidenced by a comparison made to baseline networks in the source paper (Lin et al.,
2017a), and in the integration of the pattern in YOLOv3 (Redmon e Farhadi, 2018). This
is especially relevant for detecting objects small as minutia in fingerprints.

24

3 BIBLIOGRAPHY REVIEW

In this chapter we review the available databases and their layout as well as some
existing work on minutiae detection using Deep Learning. The databases seen in the
referenced work will be described together with the existing corresponding minutiae labels.
Three existing works in minutiae extraction using CNNs will be linked with discussed
detector designs. Additionally, the performance assessment each research made available
will be summarized.

3.1 DATABASE AVAILABILITY

As discussed, a high number of labeled data is desirable in the development
of a neural networks, especially deep neutral network which have many weighs to be
trained. The desired would be a publicly available database with fingerprint images and
all their corresponding minutia, of varying people and possibly multiple capture devices
for robustness.

Since data collection in biometric systems are time-consuming, there are few pu-
blicly available fingerprint image databases, even fewer with minutia information extracted
since that has to be done by specialists.

One of the most widely used databases in the literature are from the Fingerprint
Verification Competition (FVC) (Maio et al., 2002a) (Maio et al., 2002b) (Maio et al.,
2004) (Cappelli et al., 2007), each of which is a multi-database, containing four disjoint
fingerprint databases, each collected with different sensor technology. FVC databases were
used in the studies mentioned in the following section.

FVC is comprised of four distinct databases: DB1, DB2, DB3 and DB4; each
database has 110 different fingers and 8 samples per finger (110x8=880 fingerprint images
in total). The databases from FVC 2006 increased in size to 150 fingers and 12 impressions
each, having in total 150x12=1800 fingerprint images. Each database is partitioned in two
disjoint subsets A and B:

• Subsets DB1-A, DB2-A, DB3-A, and DB4-A contain 100 fingers, 8 impressions of
the same finger for a total of 800 images. FVC2006 has 140 fingers in A subsets,
1680 images. These subsets are used for the algorithm performance evaluation in
the competition.

• Subsets DB1-B, DB2-B, DB3-B, and DB4-B contain the last 10 fingers, 8 impres-
sions of each totalling 80 images. These are made available to the participants
of the competition as a development set to allow parameter tuning before the
submission.

The image format is BMP, 256 gray-levels, uncompressed, size and resolution vary
depending on the database.

In FVC of years 2004 and before, difficulties in the fingerprints were purposely
asked of the volunteers. The impression gathering was made in three sessions for each
volunteer. In the second session, it was requested to exaggerate skin distortion in two
impressions and rotation in another two of the four impressions of the finger; during the
third session, fingers were dried in half and moistened in the other half of the impressions.

25

FVC2006 (Cappelli et al., 2007) was collected without introducing difficulties,
such as distortion, rotation and displacement, and wet/dry impressions; however, the
population is more heterogeneous, this time also including manual workers and elderly.
There was also no guarantee of a minimum quality in the acquired images and the final
datasets are subset from a larger database by choosing the most difficult fingers (according
to a quality index).

Although the FVC databases don’t have minutiae information inherently, the study
"Standard Fingerprint Databases"(Kayaoglu et al., 2013) manually extracted minutiae
information from FVC2002 and FVC2004 and made it available at ekds.gov.tr/bio/
databases.html, in this document referred to as the FM3 labels. They developed an
application called Fingerprint Manual Minutia Marker (FM3), which was then used to
mark minutiae. The minutiae they extracted are for the subsets DB1A and DB3A of two
FVC competitions (a total of 4 subsets).

To analyze the results of the manual extraction, they used two anonymous
commercial fingerprint matchers that were in the top 20% in the FVC competitions of
2002 and 2004. They compared the authentication performance of the manually extracted
minutiae information with automatically extracted minutiae. Using matcher 2, in FVC
2004 DB1A they achieved Genuine Acceptance Rates (GAR) of 92.5%, 94.0%, 95.9% with
0.001%, 0.01%, and 0.1% of respective False Acceptance Rates. While the best results of
automatic extractors achieved GAR of 86.7%, 89.5%, and 92.3%. In the same way but on
FVC2004 DB3A, FM3 achieved GAR of 96.7%, 98.1%, and 98.8%. The first automatic
extractor had GARs of to 88.5% 90.3% 92.9%, results strictly better than extractor 2, and
noticeably worse than the manually extracted.

The files follow the international standard ISO/IEC 19794-2:2005 Information
technology - Biometric data interchange formats - Part 2: Finger minutiae data.

This extracted information has

• fingerprint image quality (poor/fair/good, as perceived).

• singular point (core and delta) locations.

• for every minutia:

– its type (ending/bifurcation).
– location in image coordinates.
– angle.
– quality (poor/fair/good).

Figure 3.1 exemplifies the difference between the labels of (Kayaoglu et al., 2013)
and the ones used in FingerNet (Tang et al., 2017a). The labels used by FingerNet don’t
have any type information.

Other widely known NIST Special Databases (SD) have been discontinued and
are now unavailable to the public. The database NIST SD27 was used to test FingerNet
and MinutiaeNet mentioned in the following section.

One technique that can be employed to help on cases where there is a limited
amount of labeled data is data augmentation witch helps in generalizing the classifier and
achieving a better accuracy (Taylor e Nitschke, 2017). By modifying input images such
as changing brightness, cropping, rotating, adding noise, or such other modifications, the
database can be artificially increased in size.

ekds.gov.tr/bio/databases.html
ekds.gov.tr/bio/databases.html

26

Figura 3.1: Different labels of FM3 (Kayaoglu et al., 2013) X and FingerNet (Tang et al., 2017a) + in
the image 1_1 of FVC 2004 DB1A

More relevantly, in the SSD paper (Liu et al., 2016) they found data augmentation
to be crucial to improve performance even when training with big databases such as Pascal
VOC2007 (Everingham et al., 2007) in which there are 9,963 images (containing 24,640
annotated objects).

A future idea would be utilizing specialized denoising (Xie et al., 2012) and
super-resolution (Wang et al., 2018) neural networks as a preprocessing step to see if an
improvement in accuracy performance can be gained in tradeoff with speed performance.

3.2 EXISTING WORK

While in the networks discussed in Section 2.1.2 detection tasks needed to generate
bounding boxes for objects, in minutiae extraction a single point is enough to describe is
location. The number of minutiae classes is also much lower when compared to 80 object
categories from COCO and 20 classes from Pascal VOC. As mentioned in Section 3.1
the labeled database by M. Kayaoglu et al. (Kayaoglu et al., 2013) has minutiae types
simplified into only endings and bifurcations with other types, such as bridges, being
considered composites of these two types. Even then, the types of minutiae are ignored
in the studies examined in sequence, focusing only on localization with two classes, the
presence of minutiae or not.

With the information discussed about detection networks in Section 2.1.2 we expect
earlier versions of YOLO (lower than v3) to perform badly; since they have recorded bad
performances when detecting small objects. This is due to YOLO’s output grid limiting
the detection of small objects cluttered together, which in fingerprint minutiae occurs
frequently. YOLOv3 hopefully circumvents such a shortcoming with feature pyramids.

The scale invariance problem rectified in SSD by using multiple feature map
resolutions isn’t such a problem in this context, when compared to detection datasets
such as COCO (Lin et al., 2014) and Pascal VOC (Everingham et al., 2010) minutiae
are present in similar scales. So the progressively smaller feature maps could be cut-off
earlier since semantic and global information are not needed, instead local and higher
resolution information is desired to detect minutiae. In contrast to versions of YOLO

27

before v3, the possible precision in detection of small objects should be a benefit of this
type of architecture. The same can be said of YOLOv3’s FPN-like design pattern.

There exists some literature about using deep learning for purposes of minutiae
extraction. We will focus on these three most recent open access works:

• Fingerprint minutiae extraction using deep learning (Darlow e Rosman, 2017)
(MENet);

• FingerNet: An Unified Deep Network for Fingerprint Minutiae Extraction (Tang
et al., 2017b);

• Robust Minutiae Extractor: Integrating Deep Networks and Fingerprint Domain
Knowledge (Nguyen et al., 2018) (MinutiaeNet).

3.2.1 MENet

MENet (Darlow e Rosman, 2017) has 5 convolutional layers, 2 fully connected
layers of 1024 nodes, and a softmax output layer. The convolutional layers have 32 5× 5
filters, and the first two of these layers use pooling. The ReLU activation function was used.
Data augmentation was employed with grayscale colour inversion, contrast degradation,
contrast improvement, and noise degradation.

Their network doesn’t classify the type of minutiae, for example as ending or
bifurcation, only detects the location of each one.

MENet used FVC 2002 and 2004 for training and testing data, they split them
both 80% for training and 20% for testing. A novel automated method of gathering
labeled data of fingerprint minutiae was proposed. The method uses a fusion of multiple
commercially available minutiae extractors with a voting threshold; only points with more
than 4 out of 5 positives for minutiae were considered a overall positive.

While the network is small, its downside is that it uses a 30× 30 sliding window
over the input fingerprint. Which is known for being very slow in performance when
compared to networks with RoI extraction and regression networks.

3.2.2 FingerNet

FingerNet (Tang et al., 2017a) combines domain knowledge and the representation
ability of deep learning. They translated domain methods into convolutional kernels and
integrated them as a network. This network is shallow and has fixed weights and unifies
normalization, orientation estimation, segmentation, and Gabor enhancement.

FingerNet uses the enhancement together with segmentation score map as input
to a 3 layered conv-pooling network to perform feature extraction (analogous the shared
convolutional subnetwork described in Fast R-CNN). The resulting feature map is then
input into four different shallow subnetworks with sigmoid activation functions that
generate the following output maps.

• The first is a minutiae score map, in encodes the probability of each position (x/8,
y/8) to have a minutiae.

• The second and third are X and Y probability map, which enables precise minutiae
extraction.

• The fourth is the angle distribution map.

https://ieeexplore.ieee.org/document/8272678
https://ieeexplore.ieee.org/document/8272678
https://github.com/felixTY/FingerNet
https://github.com/luannd/MinutiaeNet
https://github.com/luannd/MinutiaeNet

28

These subnetworks work as regressors, more similar to YOLO than SSD. It
circumvents the low resolution of YOLO’s output grid by using the second and third maps,
which give additional information about precise location of the minutiae by providing
offsets.

The minutiae score map does not distinguish between minutiae types. Therefore
this network does not attempt type matching. Reflecting that, their database doesn’t have
any type information, only coordinates and orientation.

FingerNet training data is private and was collected from crime scenes, including
about 8000 pairs of matched rolled fingerprints and latent fingerprints. Each latent
fingerprint is 512 x 512 pixels in size and 500 dpi with minutiae labeled by their experts.

3.2.3 MinutiaeNet

MinutiaeNet (Nguyen et al., 2018) has 2 separate modules, CoarseNet and FineNet.
CoarseNet generates a minutiae score map which is then refined by FineNet by analyzing
the candidate patches (centered by candidate minutia points of the map).

FineNet is comparable to MENet but with CoarseNet as a filter before it, so that
moving a sliding window isn’t necessary, instead it refines the scores of the candidates
output by CoarseNet. Similar to region proposal-based methods discussed in Section 2.1.2,
CoarseNet acts as a RoI extractor for a RoI-wise subnetwork, FineNet.

CoarseNet uses Tang et al. (Tang et al., 2017a) domain knowledge unified network
described in FingerNet as a baseline.

It is notable the sheer difference in depth FingerNet and MinutiaeNet have; only
in CoarseNet, MinutiaeNet has 19 convolutional layers. MinutiaeNet’s approach is way
deeper, especially FineNet, and to avoid the exploding or vanishing gradients problem
CoarseNet uses residual learning, the same goes with FineNet that is inception-resnet
based. The run time per image is around 1.2 seconds for FVC 2004 images on a Nvidia
GTX GeForce, which is 0.833 FPS.

3.3 PERFORMANCE ASSESSMENT

To compare performance between different automatic extractors there are two
main approaches. Firstly a more direct comparison of extracted minutiae and ground truth
minutiae extracted manually by experts. Secondly a comparison between the performance
of the extracted minutiae in matching algorithms, while indirect, it gives evidence of
the performance in real world applications. As mentioned in Section 3.1, labeled data
is expensive which is why comparing to ground truth is not usually an extensive test.
Measuring matching performance, then, is a welcome addition to performance assessment.

On the MENet study, to evaluate performance, minutiae were manually extracted
from 100 fingerprints from FVC datasets, totalling 4730 minutiae points. The manually
minutia points extracted were then visually compared to automatically extracted minutiae
from MENet and other extractors. They reported a Equal Error Rate of 5.450% on
FVC2004 of the minutiae extracted by MENet.

FingerNet and MinutiaeNet compared extracted minutiae to ground truth labels
automatically, if there is a point within D pixels of difference in location and O degrees of
difference in orientation of a ground truth point it is considered a match.

FingerNet used D = 15 and O = 30 in manually extracted minutiae from the NIST
SD27, and FVC 2004 databases. MinutiaeNet used D equal to 8 and 16 in combination of

29

O equal to 10 and 30, totalling 4 different settings, also tested on the same databases as
FingerNet.

For testing FingerNet, the images used were from NIST SD27, and FVC 2004 set
A, the labels were all made by their specialists, the difference between them is exemplified
in Figure 3.1. They have precision-recall curves on their paper, for NIST SD27 and
FVC2004. No value was highlighted from the curve, but we extracted from the image that
on FVC 2004 they achieved a precision of 76% approximately with 80% recall.

MinutiaeNet achieved in FVC 2004 a Precision of 85.9% and 84.8% Recall, with
F1 Score 0.853, with settings D = 16 and O = 30 ; the paper also has precision-recall
curve.

3.3.1 Matching Performance

To test matching performance in the MENet they used the performance evaluation
protocol from FVC 2004 (http://bias.csr.unibo.it/fvc2004/perfeval.asp) calculating the
True Positive and False Positive Rates with 2,800 genuine tests and 4,950 false acceptance
tests. The used matching algorithm was Minutiae Cylinder Code (Cappelli et al., 2010)
(MCC). The test was performed on FVC 2002 DB1A and FVC 2004. Every fingerprint
was compared against all impressions of the same finger for 2800 genuine comparisons and
the first fingerprint of each fingerprint was compared against all other first impressions for
4950 impostor comparisons. They displayed a ROC curve that can be seen on their paper,
for FVC 2002 and 2004. To illustrate, in FVC 2004 they achieved 90% True Positive
Rate with a 1% False Positive Rate, and approximately 84% TPR with a 0.1% FPR.
However it must be noted that both training and testing data were used in the matching
performance evaluation. Since MENet was trained using data augmentation, and both
datasets, they argue that a maximum of 80% of the data was seen while augmented; and
also that the automatically generated labels for training wouldn’t have registered many of
the challenging minutiae, and therefore they would have never been seen by the network.

To test matching performance in the FingerNet study, they generated a Cumulative
Match Characteristic curve on NIST SD27. The used matching algorithm was based on
extended clique models (Fu et al., 2013), using only minutiae. The test was performed on
40 thousand fingerprints including NIST SD27, NIST SD4 and their private 8000 pair of
fingers database.

The MinutiaeNet study did not perform any matching performance comparison,
but did show precision-recall curves against ground truth minutiae.

3.4 CONCLUSION

There are a low amount of fingerprint databases available, even less with minutiae
data. Furthermore, a prolific dataset NIST SD27 was made unavailable. Even so, FVC
datasets have proven to be enough to train deep networks using proper data augmentation.
The available labels to us are from Fingerprint Manual Minutia Marker (FM3) (Kayaoglu
et al., 2013) and from FingerNet (Tang et al., 2017b), although FingerNet labels don’t
have minutiae type information.

Some recent works in fingerprint detection using Deep Learing have been researched
recently. MENet uses a very slow but accurate approach, sliding window. From the same
year, FingerNet performs bounding-box regression. FingerNet also integrates some domain
knowledge in the network, then also used in MinutiaeNet. More recently, MinutiaeNet

http://bias.csr.unibo.it/fvc2004/perfeval.asp

30

implemented a deeper design that employs an pattern similar to Region Proposal Networks
in the form of CoarseNet. Yet, none of them classify the type of minutiae. These design
patterns were detailed in Section 2.

31

4 METHODOLOGY

On this chapter it is shown the adjustments made to the base configuration of a
YOLO implementation. Additionally a technique for approximating angle information is
detailed. The available databases information, format and the preparation of the datasets
for training the network are included.

4.1 YOLO CONFIGURATION

The YOLO implementation here adapted is from AlexeyAB and the repository
is available publicly here github.com/AlexeyAB/darknet. It is multiplataform
implementation made in C/C++ making use of CUDA. There are multiple configurations
available, from YOLOv1 to YOLOv3, the adaptations for faster, smaller sized, networks
called the tiny versions and the configurations for specific datasets VOC and COCO.

The adaptations need to take into consideration the type of objects and context,
in this case minutiae in fingerprints. Since the pictures are greyscale it is not needed
to use the usual three channels for image detection. Data augmentation for the same
reason doesn’t need to alter hue and saturation values, leaving only rotation and exposure
changes. Random rotations of 30 degrees and changes of up to 30% in exposure, changing
the instensity of the pixels. These augmentations can go either way, for example, -30
degrees to +30 degrees rotation are equally likely. Minutiae are described as points on
the image as opposed to having bounding boxes, artificial bounding boxes will have to be
constructed for the training stage and reverted in the detection stage.

YOLO, since version 2, uses anchor boxes to make its predictions. Anchor boxes
are predefined boxes used as a baseline for the network’s predictions. Instead of predicting
bounding boxes for the objects directly it predicts the shifts in the anchor boxes. By
default YOLOv2 uses five anchor boxes with different aspect ratios and sizes.

For a specialized detector its possible to configure these anchor boxes to match
the target objects dimensions. In this case, our object boxes are artificial squares around
the minutiae. The implementation by AlexeyAB allows anchor boxes to be automatically
calculated given the objects and the width and height of the network input. It does this
by clustering the objects bounding boxes and choosing an anchor box for each cluster.
The single shot detectors used here resize input images into a fixed sized square; Since
the images from the database aren’t squares1 the dimensions for the anchor boxes will be
rectangular, even though the objects are squares2. The single chosen anchor was simply
18× 25 (the anchor is absolute in pixel in v3 configurations and relative in v2). Future
efforts to avoid this distortion, such as padding the images, could be made since the impact
is unmeasured in this context.

The full configurations and scripts can be found at github.com/bfs15/
fingerYolo.

1The network’s input is square, the image is resized to fit.
2The image could have been padded into a square, this approach was not tested.

github.com/AlexeyAB/darknet
github.com/bfs15/fingerYolo
github.com/bfs15/fingerYolo

32

4.2 DATABASE

The dataset we have available to us with labels is FVC2004, with two different sets
of labels, the ones used by FingerNet and the FM3 labels. Their difference is exemplified
in Figure 3.1. The FVC2004 database has images in the BMP file format with 500dpi
and 640 x 480 resolution. Each image has a identification number for the finger and the
number of the different impressions.

The FingerNet labels of each image are in .mnt files, they have the absolute
coordinates in pixels and angles of each minutiae and don’t contain the type (ending or
bifurcation).

absoluteX absoluteY orientation

The FM3 labels are in the international standard ISO/IEC 19794-2:2005 Finger
minutiae data. They contain orientation and type additionally to the location. A parser
of these .iso-fmr binary files is included in the project, it converts (copying) the files inside
a given directory to modified .mnt files that also have type information.

The YOLO label format is in the format:

objectClass centerRelativeX centerRelativeY widthRelative heightRelative

The position and size values are relative to the image shape (width, height),
instead of pixel absolute values, and each pair of values denotes the center position and
size of the box respectively. The labels in the COCO dataset have the same format except
for them not being relative.

The coordinates of each minutiae need to be translated into this format, and
for that an artificial bounding box needs to be constructed. Since the coordinates only
determine the center of the box, to do this translation a parameter that determines the
box size in pixels needs to be arbitrarily set, it is called box in the test configuration
names. The chosen default of this parameter was 30 pixels, this is roughly double the usual
pixel distance threshold for a minutiae match. This threshold is used when testing if the
predicted minutiae location is considered to match a ground truth annotation, since it’s
expected that the prediction won’t be pixel perfect but will be close with some variance.
This parameter was also tested with values 16, 30, 40 and 60 pixels 3 in the YOLO spp
configurations 4 to display if and how it affects the final network performance meaningfully.

4.3 SOURCEAFIS

SourceAFIS is an open source software that compares two fingerprints to create a
matching score (Vazan, 2009). It does this in two steps, minutiae extraction to create a
template and template scoring (through minutiae matching). 5 This matching score is
then used to accept fingerprints as a match or reject them as being different depending on
a threshold value for the score. For example if the score between two fingerprints are above

316 because it’s the value of our precision evaluation threshold, 30 is roughly double that, 40 is a 10
pixel step from 30 (steps of 15 would have been more consistent in hindsight), and 60 to see the effects of
a more extreme value (training is expensive so 50 was skipped).

4Chosen because it was the most powerful one available, most probable to give satisfactory performance
5Angles and types are extracted along with localization, since the minutiae matching step uses the

information.

33

40 you consider the fingerprints to be from the same finger. By varying this threshold
score you can plot Receiver operating characteristic curves (ROC curves). In ROC curves
True Positive Rate (TPR) and False Positive Rate (FPR) are plotted against each other.
False Positive Rate being the proportion of how many times an impostor is considered a
genuine match by the algorithm; True Positive Rate being the proportion of how many
times a genuine fingerprint is accepted. So this curve is used to display how changes in the
threshold affect the matcher error rates. The ROC curve helps in the choice of threshold
for the deployment of a system in a real world application, which may require harsher
or softer matching algorithms; if the acceptance of impostors are more undesirable, the
threshold can be raised for a lower False Positive Rate in exchange of a lower True Positive
Rate to the TPR vs FPR increasing curve.

SourceAFIS uses a template to match fingerprints, a list of minutiae, each with
their position in pixels, angle and type (ending or bifurcation). The position can be
easily translated from YOLO’s resulting predictions from the center of the bounding boxes
relative values. Angle extraction is explained in the next section. FingerNet annotations
don’t have any information about the type of minutiae, the resulting predictions will have
no type information. So in this case, the translation to the template minutiae type will be
set to ending. This will hurt the potential matching performance. Configurations trained
on FM3 labels on the other hand will classify types, it’s expected that these gain an edge
performance. The code for the scoring algorithm doesn’t use the width and height of
the template and so the templates have these values set to zero. The documentation of
the template SourceAFIS uses can be found at https://sourceafis.machinezoo.
com/template

4.4 ANGLE EXTRACTION

Since YOLO doesn’t have any capabilities to extract angle information a separate
approach will be used. After inputting the fingerprint image through YOLO the resulting
detection will have a list of coordinates. For each minutiae coordinate an angle needs to be
calculated. For that purpose an Orientation Map will be calculated from the fingerprint,
this approach is reported here (Huang et al., 2007).

From the greyscale fingerprint image a Sobel operator is applied. This is a
convolution with the filters:

Fx =

−1 −2 −1
0 0 0

+1 +2 +1

 and Fy =

−1 0 +1
−2 0 +2
−1 0 +1

The convolutions result in two matrices Dx and Dy, you can then extract the

magnitude ρ and orientation θ. Each of the elements of these matrices represent ρcos(θ)
and ρsin(θ) respectively.

ρ =
√
D2

x +D2
y θ = arctan(Dy/Dx)

But instead of calculating these values pixelwise we are going to average them in blocks R
of w × w pixels. So that opposite gradient vectors don’t offset each other we double the
angles. Allowing the magnitude to be squared we have:

αy = ρ2sin(2θ) αx = ρ2cos(2θ)

https://sourceafis.machinezoo.com/template
https://sourceafis.machinezoo.com/template

34

Figura 4.1: Orientation blocks for image 10_1.png in FVC2004DB1A

αy = ρ2(2cos(θ)sin(θ)) αx = ρ2
(
cos(θ)2 − sin(θ)2

)
αy = 2DxDy αx = D2

x −D2
y

α̃y = 1
w2

∑
R

αy α̃x = 1
w2

∑
R

αx

θ = 1
2arctan2 (α̃y, α̃x)

The following code is the implementation in python using numpy of this step after
the convolution.

1 def gradientAux(img, blk_sz, dx, dy):
2 alpha_x = dx*dx - dy*dy
3 alpha_y = 2 * dx * dy
4

5 alpha_x_block = [[np.sum(
6 alpha_x[idx_y: idx_y + blk_sz, idx_x: idx_x + blk_sz]
7) / blk_sz**2
8 for idx_x in range(0, img.shape[0], blk_sz)]
9 for idx_y in range(0, img.shape[1], blk_sz)]

10

11 alpha_y_block = [[np.sum(
12 alpha_y[idx_y: idx_y + blk_sz, idx_x: idx_x + blk_sz]
13)/ blk_sz**2
14 for idx_x in range(0, img.shape[0], blk_sz)]
15 for idx_y in range(0, img.shape[1], blk_sz)]
16

17 alpha_x_block = np.array(alpha_x_block)
18 alpha_y_block = np.array(alpha_y_block)
19

20 orientation_blocks = np.arctan2(alpha_y_block, alpha_x_block) / 2
21

22 return orientation_blocks

With the orientation of the blocks, to extract the orientation of a given minutiae
by its pixel coordinates, just find the orientation of the block it is in. An example of
orientation extraction can be seen in Figures 4.1 and 4.2.

35

Figura 4.2: Orientation blocks for image 10_2.png in FVC2004DB1A

4.5 CONCLUSION

Different network configurations will have to be tested against each other to
evaluate the performance gains of different YOLO designs. It’s expected that the specialized
anchors in YOLO will affect the performance greatly, since objects in this task are of
fixed aspect ration and invariant size. With two different sets of labels available to us for
FVC2004, the matching performance of these different systems will vary. One system will
be able to classify minutiae types while the other only locates them. It’s likely the type
information will improve matching performance considerably.

Since YOLO does not provide any angle information we employ a classical approach
with Sobel operators. This is just an approximation and may not have great success.

36

5 EXPERIMENTS

These experiments will test how well the adapted detection network configurations
locate fingerprint minutiae, and how the extracted minutiae information affects the
performance of the SourceAFIS’s fingerprint matching. For the evaluation of located
minutiae a precision-recall curve will be plotted comparing with the ground truth positions
in the test sets described in each scenario. For the evaluation of the fingerprint matcher a
Receiver Operating Characteristic (ROC) curve is plotted to visualize tradeoffs in True
Positive Rate and False Positive Rate in verification, as well as overall performance with
Area Under Curve values.

5.1 SCENARIO

Using the finger verification competition 2004 set A images and labels, the dataset
was divided into two different ways, both with 400 images in train and test sets.

1. One in a open world scenario where no finger in the training set appears in the
validation set, half of the fingers (50) in each set.

2. And another in a closed world scenario where half of the fingerprints of the same
finger (4) were separated into the train and validation sets.

The base configurations for the experiments are YOLOv2, YOLOv2 tiny, YOLOv2
VOC, YOLOv3, YOLOv3 tiny, YOLOv3 SPP. The configurations have been adapted with
the changes described in section 4.1.

The configurations are named in the format: base configuration, anchor type, box
size. Where the base configurations are one of the ones described above. The anchor type
can be anchor0 for the default anchors of YOLO configurations or anchor1 and anchor5
for the customized anchors for minutiae detection 1. The box size is the size used in the
translation if point labels of the original dataset to bounding boxes required by YOLO
described in section 4.2. For example v3-spp2-anchor1-box-30 uses YOLOv3 SPP base
configuration, custom anchors and 30 pixels of minutiae bounding box size in the labels.

In the configuration v3-spp3 we set to test these prediction layers. It is seen in
Figure 5.7. The first two of the three prediction layers in YOLOv3 are suited for bigger
objects than we desire to detect. Therefore in this configuration these two first prediction
layers were removed and another prediction layer further down was added.

Networks were trained from zero in 3500 epochs, with burn in of 1000, learning
rate of 0.001 with multiplier 0.1 at epochs 2000 and 3000.

Precision recall curves were made of different configurations, these were sampled
by changing each network’s threshold. Minutiae detected within 16 pixels of euclidean
distance are considered matches; 2 Furthermore they are one to one matches and the
angle corectness is not taken into account, testing only localization. The precision-recall
curves, trained and tested with FingerNet labels, for the open scenario can be seen in

1anchor1 is the custom v3 anchor (18× 25 in pixels), anchor5 is the custom v2 anchor (0.5750× 0.7667
relative to image size)

2Equal to the 16 pixels used by MinutiaeNet and close to FingerNet’s 15 pixel distance (MENet was
visually compared, not automatically).

37

Figura 5.1: Precision-recall curves, using FingerNet labels, of different network configurations in a open
world scenario

Figure 5.1 and the curves for the closed scenario in Figure 5.2. Area Under Curve values
can be compared in Tables 5.1 and 5.2. The point of closest equal precision-recall in the
curve of v3-spp2-anchor1-box-30 achieved a precision of 86.67% a recall of 86.09% using a
0.2 threshold in bounding box confidence. As expected, the default anchors, seen in the
v3-spp2-anchor0 configuration, performed terribly when compared to specialized anchors
of v3-spp2-anchor1 configurations.

Although, the precision-recall tests perform did not take angle correctness into
consideration, only location; The top performing network configurations have close per-
formance when compared to state of the art FingerNet and MinutiaeNet. MinutiaeNet
(Nguyen et al., 2018) achieved 85.9% precision and 84.8% recall. Also in FVC2004 set A 3

with pixel distance 16, but they take angle correctness into account, 30 degrees maximum
difference. While the YOLOv3 SPP configuration achieved 86.67% precision and 86.09%
recall using a 0.2 threshold. Since YOLO is the fastest available network design, these
results are promising for fingerprint matching. Further specializations could be made in
the network to detect smaller objects exclusively.

To evaluate matching performance multiple verification tests were made. They
were constructed using the FVC2004 protocol for recognition attempts (Maio et al., 2004);
Since our test dataset is 0.5 of the original set A size, 1400 genuine recognition attempts
and 1225 impostor recognition attempts were made for each curve. With 50 being the
number of different fingers we have:

Genuine attempts = 50 ∗∑7
n=1 n

Impostor attempts = ∑50−1
n=1 n

3MinutiaeNet tested with whole set A as opposed to our 50%, they trained on FVC2002

38

Figura 5.2: Precision-recall curves, using FingerNet labels, of different network configurations in a closed
world scenario

Tabela 5.1: Open set Area Under Curve (precision-recall)

configuration AUC
v2-tiny-anchor5-box-30 0.54122
v2-voc-anchor5-box-30 0.68872
v2-yolo-anchor5-box-30 0.68209
v3-spp2-anchor0-box-30 0.32793
v3-spp2-anchor1-box-16 0.88872
v3-spp2-anchor1-box-30 0.89371
v3-spp2-anchor1-box-40 0.86373
v3-spp2-anchor1-box-60 0.66968
v3-tiny-anchor1-box-30 0.84892
v3-yolo-anchor1-box-30 0.43711

39

Tabela 5.2: Closed set Area Under Curve (precision-recall)

configuration AUC
v2-tiny-anchor5-box-30 0.56851
v2-voc-anchor5-box-30 0.65874
v2-yolo-anchor5-box-30 0.67513
v3-spp2-anchor0-box-30 0.45210
v3-spp2-anchor1-box-16 0.88515
v3-spp2-anchor1-box-30 0.88328
v3-spp2-anchor1-box-40 0.82253
v3-spp2-anchor1-box-60 0.67977
v3-tiny-anchor1-box-30 0.82913
v3-yolo-anchor1-box-30 0.36619

The matching performance evaluations of extracted minutiae used the angle
extraction technique described Section in 4.4, unless specified otherwise. 4 Configurations
trained with FM3 labels do classify types while FingerNet labels only locate minutiae.

To analyze ROC curves, first different thresholds using the same network configu-
ration were compared in Figures 5.3 and 5.4. Figure 5.3 has a bigger threshold stride, 10%,
to visualize big threshold changes. The same goes for Figure 5.5, however in this instance
networks were trained with FM3 labels. It can be seen that this matcher performs strictly
better with batches of minutiae with higher recall, although they have less precision.
Illustrated are the curve with 0.8 to 0.1 threshold, each decreasing step in threshold
dominating the previous curve’s performance, ending in 0.1 with the biggest area. While
Figure 5.4 has smaller threshold strides to see how the matcher behaves in higher detail,
with a bigger quantity of less precise minutiae, that also bring higher recall.

To compare different networks matching performance the ROC curves of different
networks were plotted, all using the same 0.1 threshold. In Figure 5.6 they were trained
with FingerNet labels, while in Figure 5.7 they were trained with FM3 labels. Our
speculations were confirmed, YOLOv2 performed far worse then even the tiny version of
YOLOv3. Also, the removal of the first two prediction layers from YOLOv3 didn’t impact
the performance of the v3-spp3 configuration.

Relevant configurations can be compared against SourceAFIS native implementa-
tion in Figure 5.8, all networks using 0.1 threshold. 5 Sadly none of them outperformed
SourceAFIS. The best performing configuration has equal evaluation to SourceAFIS in a
True Positive Rate (TPR) of 84.5% and False Positive Rate (FPR) of 15%. But SourceAFIS
dominates in values of lower FPR in the ROC curve, having higher TPR. Even so, the
proposed approach has a higher area than SourceAFIS in the curve. We suspect this
lack of performance caused by the method of angle approximation. This is evidenced by
the curve which ignores angles, v2-spp3-100-noAngle, it outperforms other configurations.
Also, the precision and recall obtained surpassed both FingerNet and MinutiaeNet, when
not considering angles (Figure 5.1). A better technique for angle extraction could be
easily be swapped for the current Orientation Map. Such as the one employed in MENet
that uses local orientation estimation (Khan, 2011). A better angle extraction and a type
robust matcher a such as Minutiae Cylinder Code (Cappelli et al., 2010) might prove to

4"noAngle"configurations
5SourceAFIS reports to be robust to imprecise minutiae, so a tradeoff for a better recall is made by

choosing a threshold half of 0.2 that had equal precision-recall reported earlier.

40

Figura 5.3: ROC curves, using FingerNet labels, of the v3-spp network using different YOLO detection
thresholds, 100 means it’s a threshold of 0.100

Figura 5.4: ROC curves, using FingerNet labels, of the v3-spp network using different small detection
thresholds, 100 means it’s a threshold of 0.100

41

Figura 5.5: ROC curves, using FM3 labels, of the v3-spp network using different YOLO detection
thresholds

Figura 5.6: ROC curves, using FingerNet labels, of different network configurations in a open world
scenario

42

Figura 5.7: ROC curves, using FM3 labels, of different network configurations in a open world scenario

be sufficient to beat classical approaches with good margin. Tests using another matcher,
like Minutiae Cylinder Code (Cappelli et al., 2010) that does not use type information,
and a better angle extraction method would need to be done to confirm this.

Its hard to compare the matching performance to MENet, where they achieved
90% True Positive Rate with a 1% False Positive Rate. Since they use a different matcher
with a performance difference unknown to us from SourceAFIS’s matcher algorithm. Even
so, MENet uses a slow sliding windows approach, that, while takes a lot of processing
time, is known to be quite effective.

5.2 CONCLUSION

The networks tested here obtained competitive results with state of the art
Deep Learning minutiae detectors against the FVC2004 dataset. As expected, YOLOv3
performed well in this task of small object detection, while YOLOv2 struggled, not
outperforming even YOLOv3 Tiny.

Closed set configurations did not show significant improvement in precision and
recall when compared to Open set. Such is small evidence that data augmentation properly
decreases the likelihood of the network memorizing input data.

Matching performance leaves to be desired, not beating SourceAFIS native imple-
mentation while in FPR lower than 15%. The most relevant comparisons between tested
configurations are in Figure 5.8. They have equal values in the point True Positive Rate
(TPR) 84.5% and False Positive Rate (FPR) 15%. Better angle extraction and a type
robust matcher a such as Minutiae Cylinder Code (Cappelli et al., 2010) might prove to be
sufficient to beat classical approaches with good margin. As evidence, the precision and

43

Figura 5.8: ROC curves of different network configurations in a open world scenario, configurations
suffixed with FM3 were trained with those labels

recall achieved in the FVC2004 were comparable to state of the art performance. Even
though the approach proposed doesn’t extract angles well, a better technique could be
easily be swapped for the current Orientation Map. A distinguishable feature is that it
extracts type information, which none of the other state of the art systems referenced do.

44

6 CONCLUSION

In this study we analyzed multiple Convolutional Neural Network detector ar-
chitectures. A lot of progress has been made both in performance and speed of the
designs, from Selective Search to pure regressors and multi-scale predictions. The goal
of adapting a well known modern network, YOLO, to detect fingerprint minutiae was
successful. The best results used the YOLOv3 SPP design, though it doesn’t have much
difference to the non-SPP one. It achieved 86.67% precision and 86.09% recall against
the FingerNet minutiae labels for FVC2004. This performance achieved was better than
expected considering the slower specialized MinutiaeNet (Nguyen et al., 2018) achieved
85.9% precision and 84.8% recall in the same FVC2004 database. Although the comparison
can’t be made directly, since MinutiaeNet considers angle correctness when calculating
precision while the proposed approach doesn’t, it is still good evidence for the localization
task.

YOLO adapted well for this change of tasks, the detection of multiple small details
in a single image. While the earlier version, YOLOv2, didn’t perform that well, YOLOv3
improved the results by a large margin, even when not using the configuration with the
spatial pooling pyramid. None of the previous works mentioned here had a design quite
like the pure regressor of YOLO.

As for the matching the performance of the extracted minutiae data, it is affected
heavily by low quality of angle information. By using a better technique for the angle
calculation one could significantly improve the networks performance, since it was able to
achieve state of the art detection. Though type information given by networks trained
with FM3 labels did improve matching accuracy, when compared to same design networks
trained with no type classification (FingerNet labels). A distinguishable feat since the
other researched networks do not attempt to classify the type of minutiae.

45

REFERÊNCIAS

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M. et al. (2016). Tensorflow: a system for large-scale machine learning.
Em OSDI, volume 16, páginas 265–283.

Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J. e Ogden, J. M. (1984). Pyramid
methods in image processing. RCA engineer, 29(6):33–41.

Cappelli, R., Ferrara, M., Franco, A. e Maltoni, D. (2007). Fingerprint verification
competition 2006. Biometric Technology Today, 15(7-8):7–9.

Cappelli, R., Ferrara, M. e Maltoni, D. (2010). Minutia cylinder-code: A new representation
and matching technique for fingerprint recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(12):2128–2141.

Chollet, F. (2015). Keras: The python deep learning library.

Collobert, R., Kavukcuoglu, K. e Farabet, C. (2016). Torch: A scientific computing
framework for luajit.

Dai, J., Li, Y., He, K. e Sun, J. (2016). R-fcn: Object detection via region-based fully
convolutional networks. Em Advances in neural information processing systems, páginas
379–387.

Darlow, L. N. e Rosman, B. (2017). Fingerprint minutiae extraction using deep learning.
Em Biometrics (IJCB), 2017 IEEE International Joint Conference on, páginas 22–30.
IEEE.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. e Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. Em Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, páginas 248–255. Ieee.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E. e Darrell, T. (2014).
Decaf: A deep convolutional activation feature for generic visual recognition. Em
International conference on machine learning, páginas 647–655.

Duchi, J., Hazan, E. e Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J. e Zisserman, A. (2010). The
pascal visual object classes (voc) challenge. International journal of computer vision,
88(2):303–338.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. e Zisserman, A. (2007). The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. e Zisserman, A. (2012). The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

46

FBI (1984). The Science of Fingerprints: Classification and Uses. Washington, D.C., U.S.
Government Printing Office.

Fu, X., Liu, C., Bian, J., Feng, J., Wang, H. e Mao, Z. (2013). Extended clique models:
A new matching strategy for fingerprint recognition. Em Biometrics (ICB), 2013
International Conference on, páginas 1–6. IEEE.

Garcia-Gasulla, D., Parés, F., Vilalta, A., Moreno, J., Ayguadé, E., Labarta, J., Cortés, U.
e Suzumura, T. (2017). On the behavior of convolutional nets for feature extraction.
arXiv preprint arXiv:1703.01127.

Girshick, R. (2015). Fast r-cnn. Em Proceedings of the IEEE international conference on
computer vision, páginas 1440–1448.

Girshick, R., Donahue, J., Darrell, T. e Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. Em Proceedings of the IEEE
conference on computer vision and pattern recognition, páginas 580–587.

Glorot, X., Bordes, A. e Bengio, Y. (2011). Deep sparse rectifier neural networks. Em
Gordon, G., Dunson, D. e Dudík, M., editores, Proceedings of the Fourteenth Internati-
onal Conference on Artificial Intelligence and Statistics, volume 15 de Proceedings of
Machine Learning Research, páginas 315–323, Fort Lauderdale, FL, USA. PMLR.

He, K., Zhang, X., Ren, S. e Sun, J. (2014). Spatial pyramid pooling in deep convolutional
networks for visual recognition. Em European conference on computer vision, páginas
346–361. Springer.

He, K., Zhang, X., Ren, S. e Sun, J. (2015). Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. Em Proceedings of the IEEE international
conference on computer vision, páginas 1026–1034.

He, K., Zhang, X., Ren, S. e Sun, J. (2016). Deep residual learning for image recognition.
Em Proceedings of the IEEE conference on computer vision and pattern recognition,
páginas 770–778.

Huang, P., Chang, C.-Y. e Chen, C.-C. (2007). Implementation of an automatic fingerprint
identification system. Em 2007 IEEE International Conference on Electro/Information
Technology, páginas 412–415. IEEE.

Huang, Z. e Wang, J. (2019). Dc-spp-yolo: Dense connection and spatial pyramid pooling
based yolo for object detection. arXiv preprint arXiv:1903.08589.

Ioffe, S. e Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jain, A. K., Nandakumar, K. e Ross, A. (2016). 50 years of biometric research: Accom-
plishments, challenges, and opportunities. Pattern Recognition Letters, 79:80–105.

Kayaoglu, M., Topcu, B. e Uludag, U. (2013). Standard fingerprint databases: Manual
minutiae labeling and matcher performance analyses. arXiv preprint arXiv:1305.1443.

Khan, M. A. (2011). Fingerprint image enhancement and minutiae extraction.

47

Kingma, D. P. e Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Krizhevsky, A., Sutskever, I. e Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Em Advances in neural information processing systems,
páginas 1097–1105.

Lazebnik, S., Schmid, C. e Ponce, J. (2006). Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. Em null, páginas 2169–2178. IEEE.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B. e Belongie, S. (2017a). Feature
pyramid networks for object detection. Em Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, páginas 2117–2125.

Lin, T.-Y., Goyal, P., Girshick, R., He, K. e Dollár, P. (2017b). Focal loss for dense object
detection. Em Proceedings of the IEEE international conference on computer vision,
páginas 2980–2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. e Zitnick,
C. L. (2014). Microsoft coco: Common objects in context. Em European conference on
computer vision, páginas 740–755. Springer.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y. e Berg, A. C. (2016).
Ssd: Single shot multibox detector. Em European conference on computer vision, páginas
21–37. Springer.

Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L. e Jain, A. K. (2002a). Fvc2000:
Fingerprint verification competition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(3):402–412.

Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L. e Jain, A. K. (2002b). Fvc2002: Second
fingerprint verification competition. Em Pattern recognition, 2002. Proceedings. 16th
international conference on, volume 3, páginas 811–814. IEEE.

Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L. e Jain, A. K. (2004). Fvc2004:
Third fingerprint verification competition. Em Biometric Authentication, páginas 1–7.
Springer.

Maltoni, D., Maio, D., Jain, A. K. e Prabhakar, S. (2009). Handbook of fingerprint
recognition. Springer Science & Business Media.

Nguyen, D.-L., Cao, K. e Jain, A. K. (2018). Robust minutiae extractor: Integrating
deep networks and fingerprint domain knowledge. Em 2018 International Conference
on Biometrics (ICB), páginas 9–16. IEEE.

Perez, L. e Wang, J. (2017). The effectiveness of data augmentation in image classification
using deep learning. arXiv preprint arXiv:1712.04621.

Prabhakar, S., Jain, A. K. e Pankanti, S. (2003). Learning fingerprint minutiae location
and type. Pattern recognition, 36(8):1847–1857.

Redmon, J., Divvala, S., Girshick, R. e Farhadi, A. (2016). You only look once: Unified,
real-time object detection. Em Proceedings of the IEEE conference on computer vision
and pattern recognition, páginas 779–788.

48

Redmon, J. e Farhadi, A. (2017). Yolo9000: better, faster, stronger. arXiv preprint.

Redmon, J. e Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

Ren, S., He, K., Girshick, R. e Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. Em Advances in neural information processing
systems, páginas 91–99.

Simonyan, K. e Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V. e Rabinovich, A. (2015). Going deeper with convolutions. Em Proceedings of the
IEEE conference on computer vision and pattern recognition, páginas 1–9.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. e Wojna, Z. (2016). Rethinking the
inception architecture for computer vision. Em Proceedings of the IEEE conference on
computer vision and pattern recognition, páginas 2818–2826.

Tang, Y., Gao, F. e Feng, J. (2017a). Latent fingerprint minutia extraction using fully con-
volutional network. Em Biometrics (IJCB), 2017 IEEE International Joint Conference
on, páginas 117–123. IEEE.

Tang, Y., Gao, F., Feng, J. e Liu, Y. (2017b). Fingernet: An unified deep network for
fingerprint minutiae extraction. Em Biometrics (IJCB), 2017 IEEE International Joint
Conference on, páginas 108–116. IEEE.

Taylor, L. e Nitschke, G. (2017). Improving deep learning using generic data augmentation.
arXiv preprint arXiv:1708.06020.

Uijlings, J. R., Van De Sande, K. E., Gevers, T. e Smeulders, A. W. (2013). Selective
search for object recognition. International journal of computer vision, 104(2):154–171.

Vazan, R. (2009). Source afis—fingerprint recognition library for. net and experimentally
for java.

Wang, Y., Perazzi, F., McWilliams, B., Sorkine-Hornung, A., Sorkine-Hornung, O. e
Schroers, C. (2018). A fully progressive approach to single-image super-resolution. Em
CVPR Workshops.

Xie, J., Xu, L. e Chen, E. (2012). Image denoising and inpainting with deep neural
networks. Em Advances in neural information processing systems, páginas 341–349.

Yang, X., Feng, J. e Zhou, J. (2014). Localized dictionaries based orientation field
estimation for latent fingerprints. IEEE transactions on pattern analysis and machine
intelligence, 36(5):955–969.

Zhao, F. e Tang, X. (2007). Preprocessing and postprocessing for skeleton-based fingerprint
minutiae extraction. Pattern Recognition, 40(4):1270–1281.

	Introduction
	Challenge
	Motivation
	Proposal
	Contribution
	Document layout

	Background
	Deep Learning
	Improvements
	Convolutional Neural Networks for Object Detection
	CNN regressors

	Minutiae
	Conclusion

	Bibliography Review
	Database Availability
	Existing Work
	MENet
	FingerNet
	MinutiaeNet

	Performance Assessment
	Matching Performance

	Conclusion

	Methodology
	YOLO configuration
	Database
	SourceAFIS
	Angle Extraction
	Conclusion

	Experiments
	Scenario
	Conclusion

	Conclusion
	REFERÊNCIAS

